NICH
Server IP : 127.0.1.1  /  Your IP : 216.73.216.152
Web Server : Apache/2.4.52 (Ubuntu)
System : Linux bahcrestlinepropertiesllc 5.15.0-113-generic #123-Ubuntu SMP Mon Jun 10 08:16:17 UTC 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.33
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /var/www/bahcrestline/core/vendor/scrivo/highlight.php/test/detect/stan/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ HOME SHELL ]     

Current File : /var/www/bahcrestline/core/vendor/scrivo/highlight.php/test/detect/stan/default.txt
// Multivariate Regression Example
// Taken from stan-reference-2.8.0.pdf p.66

data {
  int<lower=0> N;             // num individuals
  int<lower=1> K;             // num ind predictors
  int<lower=1> J;             // num groups
  int<lower=1> L;             // num group predictors
  int<lower=1,upper=J> jj[N]; // group for individual
  matrix[N,K] x;              // individual predictors
  row_vector[L] u[J];         // group predictors
  vector[N] y;                // outcomes
}
parameters {
  corr_matrix[K] Omega;       // prior correlation
  vector<lower=0>[K] tau;     // prior scale
  matrix[L,K] gamma;          // group coeffs
  vector[K] beta[J];          // indiv coeffs by group
  real<lower=0> sigma;        // prediction error scale
}
model {
  tau ~ cauchy(0,2.5);
  Omega ~ lkj_corr(2);
  to_vector(gamma) ~ normal(0, 5);
  {
    row_vector[K] u_gamma[J];
    for (j in 1:J)
      u_gamma[j] <- u[j] * gamma;
    beta ~ multi_normal(u_gamma, quad_form_diag(Omega, tau));
  }
  {
    vector[N] x_beta_jj;
    for (n in 1:N)
      x_beta_jj[n] <- x[n] * beta[jj[n]];
    y ~ normal(x_beta_jj, sigma);
  }
}

# Note: Octothorpes indicate comments, too!

Anon7 - 2022
AnonSec Team